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IMPORTANCE Retinopathy of prematurity (ROP) is a leading cause of blindness in children,
with significant disparities in outcomes between high-income and low-income countries,
due in part to insufficient access to ROP screening.

OBJECTIVE To evaluate how well autonomous artificial intelligence (AI)–based ROP screening
can detect more-than-mild ROP (mtmROP) and type 1 ROP.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study evaluated the performance of an
AI algorithm, trained and calibrated using 2530 examinations from 843 infants in the Imaging
and Informatics in Retinopathy of Prematurity (i-ROP) study, on 2 external datasets (6245
examinations from 1545 infants in the Stanford University Network for Diagnosis of ROP
[SUNDROP] and 5635 examinations from 2699 infants in the Aravind Eye Care Systems
[AECS] telemedicine programs). Data were taken from 11 and 48 neonatal care units in the US
and India, respectively. Data were collected from January 2012 to July 2021, and data were
analyzed from July to December 2023.

EXPOSURES An imaging processing pipeline was created using deep learning to autonomously
identify mtmROP and type 1 ROP in eye examinations performed via telemedicine.

MAIN OUTCOMES AND MEASURES The area under the receiver operating characteristics curve
(AUROC) as well as sensitivity and specificity for detection of mtmROP and type 1 ROP at the
eye examination and patient levels.

RESULTS The prevalence of mtmROP and type 1 ROP were 5.9% (91 of 1545) and 1.2% (18 of
1545), respectively, in the SUNDROP dataset and 6.2% (168 of 2699) and 2.5% (68 of 2699)
in the AECS dataset. Examination-level AUROCs for mtmROP and type 1 ROP were 0.896 and
0.985, respectively, in the SUNDROP dataset and 0.920 and 0.982 in the AECS dataset.
At the cross-sectional examination level, mtmROP detection had high sensitivity (SUNDROP:
mtmROP, 83.5%; 95% CI, 76.6-87.7; type 1 ROP, 82.2%; 95% CI, 81.2-83.1; AECS: mtmROP,
80.8%; 95% CI, 76.2-84.9; type 1 ROP, 87.8%; 95% CI, 86.8-88.7). At the patient level,
all infants who developed type 1 ROP screened positive (SUNDROP: 100%; 95% CI, 81.4-100;
AECS: 100%; 95% CI, 94.7-100) prior to diagnosis.

CONCLUSIONS AND RELEVANCE Where and when ROP telemedicine programs can be
implemented, autonomous ROP screening may be an effective force multiplier for
secondary prevention of ROP.
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R etinopathy of prematurity (ROP) is largely prevent-
able yet remains a leading cause of childhood
blindness.1,2 Unequitable resource distribution and

differences in the epidemiology of premature birth contrib-
ute to a higher at-risk population in regions where there are
not enough ophthalmologists to screen for and treat blinding
ROP. This, unfortunately, worsens as neonatal mortality
improves.3 Each year, an estimated 30 000 to 50 000 in-
fants, predominantly from low-income and middle-income
countries, experience ROP-related visual loss. Artificial intel-
ligence (AI) is emerging as a key tool for disease screening, with
several autonomous diabetic retinopathy (DR) screening
systems already approved by the US Food and Drug Adminis-
tration, which are expanding globally.4-7 For ROP, autono-
mous screening could be implemented in one of several large
ROP telemedicine programs in the US and India, where it may
be even more impactful than DR screening since the popula-
tion is captive—within neonatal intensive care units (NICUs)—
and the time period for screening is finite.8-11

In autonomous deployment, the purpose of AI is to screen
for and refer, rather than to diagnose, a disease. In DR, an out-
put of more-than-mild DR that complements the Early
Treatment of Diabetic Retinopathy Study (ETDRS) Diabetic
Retinopathy Severity Score was developed.12 In ROP, disease
severity is described using 2 frameworks: the International
Classification of ROP (ICROP) and the Early Treatment for ROP
(ETROP) categories, of which there are 4: (1) no ROP, (2) less
than type 2 ROP (ie, mild ROP), (3) type 2 ROP, and (4) type 1
ROP.1,13,14 While it is currently recommended that all cases of
type 1 ROP be treated, some cases of type 2 ROP are treated at
clinicians’ discretion.13,15 Ultimately, the most important cri-
terion determining the need for treatment is the presence of
plus disease, which the most recent ICROP has defined as a
spectrum of vascular abnormality from normal to pre–plus
disease to plus disease.1,13 Thus, one way to integrate these 2
paradigms into a simple binary heuristic (refer or not) would
be to consider more-than-mild ROP (mtmROP), which we
define as eyes with type 2 ROP or type 1 ROP or any eye with
pre–plus disease.

Developed as a plus disease classifier, the i-ROP deep
learning (DL) algorithm has since been used to assign a vas-
cular severity score (VSS) to better reflect the spectrum of
plus disease, which has been endorsed as an assistive soft-
ware as medical device for ROP.16-18 Previous work has also
validated the concept that VSS may be a useful surrogate for
overall ROP severity in an eye; however, many AI algorithms
demonstrate efficacy in preliminary studies with curated
datasets but fail, for a number of reasons, to demonstrate
effectiveness in clinical practice.19-25 Herein, we detail the
optimization of the i-ROP DL, which involves retraining a
more efficient model, using Monte Carlo dropout (MCD) and
model ensembling for increased repeatability, and setting an
autonomous mtmROP threshold through validation on the
i-ROP consortium dataset. We also developed an image pre-
processing pipeline for different fields of view (FOVs) and
image qualities. Performance was assessed on 2 external
datasets—the Stanford University Network for Diagnosis of
ROP (SUNDROP) cohort in the US and the Aravind Eye Care

Systems (AECS) cohort in India—with the aim to assess the
model’s effectiveness for autonomously detecting mtmROP
and type 1 ROP.

Methods
The methods are described in 2 steps: optimization of the ex-
isting model using data from the i-ROP study and external vali-
dation of the optimized (locked) model using data from the
SUNDROP and AECS cohorts. This diagnostic study used ret-
rospective data and adhered to the Standards for Reporting of
Diagnostic Accuracy (STARD) reporting guideline.26 The i-ROP
imaging study was approved by the institutional review boards
at the coordinating center (Oregon Health & Science University)
and at each of 8 North American study centers.16 Informed
written consent was obtained from guardians of all enrolled
infants. Analysis of SUNDROP data was approved by the
Stanford University School of Medicine Institutional Review
B oard and analysis of Retinopathy of Prematurity
Eradication–Save Our Sight (ROPE-SOS) data was approved by
the institutional review board at AECS, both under a waiver
of consent for analysis of retrospective data. All institutions
abided by the Declaration of Helsinki. Participants did not
receive a stipend or any other incentive to participate.

Optimization of i-ROP DL Algorithm
and Image Processing Pipeline
Data Collection and Partitioning
From January 2012 to July 2020, the i-ROP Consortium col-
lected a dataset of serial retinal fundus images (RFIs) from in-
fants who underwent routine ROP screenings (eTable 1 in
Supplement 1). Images were acquired using the RetCam (Na-
tus), and 5 standard FOVs (posterior, nasal, temporal, infe-
rior, and superior) were captured. Bedside examinations were
conducted alongside RFI analysis by 4 expert readers (S. R. O.,
R. V. P. C., M. F. C., and J. P. C.), who also assessed image qual-
ity. A reference standard diagnosis was formed from both
methods. Images deemed not acceptable for diagnosis by the
consensus of the 3 readers or showing stage 4 or 5 ROP were

Key Points
Question How does a fully autonomous artificial intelligence
system perform in identifying more-than-mild retinopathy of
prematurity (mtmROP) and type 1 ROP?

Findings In this diagnostic study, the performance of an artificial
intelligence system, which was trained and calibrated using 2530
examinations from 843 infants in the i-ROP study, had more than
80% sensitivity and specificity for mtmROP and 100% sensitivity
for type 1 ROP in 2 large external ROP programs (SUNDROP and
AECS), with potential physician workload reductions of 80% in
both populations.

Meaning While not available for clinical practice settings at this
time, these results provide evidence that autonomous ROP
screening may be effective in ROP telemedicine programs,
without substantial risk of missing severe ROP.

Research Original Investigation Multinational External Validation of Autonomous Retinopathy of Prematurity Screening

E2 JAMA Ophthalmology Published online March 7, 2024 (Reprinted) jamaophthalmology.com

© 2024 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by Alok Gupta on 03/08/2024

http://www.equator-network.org/reporting-guidelines/stard/
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaophthalmol.2024.0045?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2024.0045
http://www.jamaophthalmology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2024.0045


excluded. Following collection, images were stratified by in-
fant into a training dataset (635 of 843 infants [75.3%%]; 16 334
of 22 038 images [74.1%]) and test dataset (208 of 843 infants
[24.7%]; 5704 of 22 038 images [25.9%]), with the training data-
set further divided into 5 roughly equal cross-validation
splits (eTable 2 in Supplement 1).

Optimization of VSS Network
Retinal blood vessels in RFIs were segmented into black-and-
white vessel maps using a segmentation network, then used
to train and validate EfficientNet-B0 models for detection of
normal, pre–plus disease, and plus disease (eMethods and eFig-
ure in Supplement 1). Training involved batch sizes of 16, early
stopping at 50 epochs, a learning rate of 0.001, and a weighted
random sampler, with models updating after each epoch with
decreased cross-entropy loss of the validation dataset.

In total, 5 models were trained and combined to create a
cross-validation ensemble, including MCD.27,28 Whereas tra-
ditional dropout is only used during training, MCD activates
dropout during inference so each forward pass of an image
through a network traverses a slightly varied version of the
trained model. Thus, every image was passed through each of
the 5 models 5 times, resulting in 25 normal, pre–plus dis-
ease, and plus disease probabilities (P) per image, as illus-
trated in the eFigure in Supplement 1. These probabilities
were averaged into single normal, pre–plus disease, and plus
disease probabilities and converted into an image-level VSS:

VSS = P(normal) + 5 × P(pre–plus disease) + 9 × P(plus
disease)

The VSS of all images captured from a single eye examination
were averaged to create an eye-level VSS, and the greater of
the 2 eye-level measurements was used as the examination-
level VSS.

Calibration of Operating Point for Autonomous Use
To use the continuous VSS output for screening, we evalu-
ated each 0.1-VSS increment for detection of mtmROP, opti-
mizing for sensitivity and specificity of at least 80.0% with
95% CIs no lower than 75.0% and 100% sensitivity for type 1
ROP. The optimal cutoff was 3.1 or greater (sensitivity, 94.3%;
95% CI, 87.2-98.1; specificity, 80.8%; 95% CI, 77.2-84.1), with
lower cutoffs providing higher sensitivity but lower specificity.

Assessment of Image Quality
For real-world datasets, it is essential to implement a work-
flow that can identify images of insufficient quality for analy-
sis. For the i-ROP DL, 2 criteria are essential: images must show
the posterior retina (where plus disease is diagnosed) and reti-
nal vessels must be clearly visible for segmentation. Overly
strict quality assurance risks insufficient images for analysis,
while too lax assurance could lead to analyzing erroneous im-
ages (eg, anterior segment images). To meet the above-
mentioned requirements, a workflow that detected the pres-
ence of optic nerves in images was implemented, which
allowed further processing if present (eMethods and eFigure
in Supplement 1). Both eyes were required to have at least 1
image of acceptable quality. If 1 or both eyes had no accept-

able images, the examination was automatically referred for
in-person examination (ie, labeled as mtmROP) and included
as a positive examination in performance calculations. No ex-
aminations were excluded from analysis.

External Validation of Autonomous Screening
Using an Optimized i-ROP DL System
Following training and calibration, all components of the sys-
tem—assessment of image quality, vessel segmentation, VSS
inference, and the mtmROP operating point—were locked
for external validation.

Datasets
As part of the SUNDROP telemedicine program in the US, in-
fants born February 2013 to July 2021 across 11 NICUs in north-
ern California, Nevada, and Indiana were serially screened for
ROP using the SUNDROP protocol and the American Acad-
emy of Pediatrics 2006 guidelines.29,30 RFIs were captured by
NICU nurses trained in using the RetCam (Natus). Five dis-
tinct FOVs were captured per eye, which were transferred to
a clinician (D. M. M.) for ROP diagnosis (zone, stage, and plus
disease).

The ROPE-SOS telemedicine program in India serially
screened infants every week from March 2019 to December
2020, with trained technicians traveling to each of the 48 par-
ticipating NICUs and using a RetCam Shuttle (Natus) or a Forus
3nethra (Forus) to capture RFIs of infants who aligned with In-
dian screening guidelines (born at 34 weeks’ gestation or ear-
lier and weighing 2000 g or less). RFIs of both eyes were ac-
quired, which encompassed an anterior segment photograph
and multiple FOVs. This dataset was stratified by camera manu-
facturer into 2 subsets: AECS-RetCam and AECS-3nethra.

Performance of the i-ROP DL System
We analyzed the performance, both at the examination and in-
fant levels, in both datasets. Posttreatment examinations were
excluded, and type 1 ROP was defined based on ETROP defi-
nitions. Area under the receiver operating characteristics curve
(AUROC), sensitivity, and specificity for detection of mtm-
ROP and type 1 ROP in the SUNDROP and AECS datasets were
calculated cross-sectionally at the examination level. Sensi-
tivity, at the infant level, for type 1 ROP was also evaluated. Fi-
nally, we evaluated the potential reduction in physician work-
load based on the fraction of examinations that could be read
autonomously (screened negative for mtmROP) in both data-
sets. We assumed that eyes that accurately screened positive
for mtmROP would be continuously evaluated by clinicians.

Statistical Analysis
Statistical analyses were performed using R version 4.3.0 (The
R Foundation). Statistical differences in patient demographic
characteristics stratified disease status as well as VSS and ROP
category were determined using Kruskal-Wallis rank sum tests
and post-hoc Dunn tests using the Benjamini-Hochberg pro-
cedure. 95% CIs were determined using the Clopper-Pearson
method. ROC curves were compared using the DeLong test.
All statistical tests were 2-sided, and P values were not ad-
justed for multiple comparisons.
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Results

Demographic Characteristics of SUNDROP and AECS Datasets
The demographic characteristics of the SUNDROP and AECS
external validation datasets are presented in Table 1. Consis-
tent with known differences in the epidemiology of ROP be-
tween the US and India, the mean birth weight was 423 g
(95% CI, 389-457; P < .001) lower and the mean gestational age
was 4.2 weeks (95% CI, 4.0-4.4; P < .001) lower in SUNDROP
compared with AECS.

Within all datasets, infants who developed mtmROP had
lower birth weight and gestational age compared with
infants with no or mild ROP. In SUNDROP, the mean birth
weight was 544 g (95% CI, 475-613; P < .001) lower in those
with mtmROP, and in AECS, the mean birth weight was 462
g (95% CI, 415-509) lower. In SUNDROP, the mean gesta-
tional age difference between infants with mtmROP and
those with no or mild ROP was 3.9 weeks (95% CI, 3.3-4.5;
P < .001) lower, and in AECS, it was 3.7 weeks (95% CI,
3.3-4.1) lower.

Performance of Autonomous ROP Screening
at the Eye Examination and Infant Levels
Figure 1 displays the associations between the VSS, mtmROP,
and type 1 ROP in both datasets. For each dataset, there were
significant differences in VSS between ROP categories. Dunn
tests determined that the differences for all datasets existed
between no or mild ROP and mtmROP. The VSS was 2.4 points
(95% CI, 2.2-2.6; P < .001) higher for eyes with mtmROP than
those without in the SUNDROP dataset and 3.1 points (95% CI,
2.9-3.4; P < .001) higher in the AECS dataset. Compared with
eyes with no or mild ROP, eyes with type 1 ROP had a VSS that
was 4.3 points (95% CI, 3.7-5.0; P < .001) higher and 5.0 points
(95% CI, 4.6-5.4; P < .001) higher in the SUNDROP and AECS
datasets, respectively.

Eye Examination–Level Analysis
Cross-sectional examination-level AUROCs for detection of
mtmROP and type 1 ROP is presented in Table 2. For both mtm-
ROP and type 1 ROP, the AUROC was similar in both SUN-
DROP and AECS, with mean differences of 0.024 (95% CI,
−0.006 to 0.054; P = .12) for mtmROP and 0.003 (95% CI,

Table 1. Demographic Characteristics of the Screened Population in the Stanford University Network
for Diagnosis of ROP (SUNDROP) and Aravind Eye Care Systems (AECS) Cohorts

Characteristic

No. (%)

Total No or mild ROP mtmROP Type 1 ROP

SUNDROP

Birth weight, mean (SD), g 1311.5 (592) 1343.6 (591.5) 799.5 (286.2) 704.5 (181.3)

Gestational age, mean (SD), wk 29.3 (3.3) 29.6 (3.2) 25.8 (2.7) 24.8 (1.5)

Infants 1545 (100) 1454 (94.1) 91 (5.9) 18 (1.2)

Eyes 3089 (100) 2923 (94.6) 166 (5.4) 35 (1.1)

Examinations 6205 (100) 5892 (95.0) 313 (5.0) 19 (0.3)

Images 76 258 (100) 72671 (95.3) 3587 (4.7) 241 (0.3)

AECS (all)

Birth weight, mean (SD), g 1734.5 (449.8) 1763.2 (443.8) 1301.1 (288) 1291.2 (280.6)

Gestational age, mean (SD), wk 33.5 (2.9) 33.7 (2.7) 30.0 (2.4) 30.0 (2.2)

Infants 2699 (100) 2531 (93.8) 168 (6.2) 68 (2.5)

Eyes 5635 (100) 5278 (93.7) 357 (6.3) 140 (2.5)

Examinations 5145 (100) 4811 (93.5) 334 (6.5) 71 (1.4)

Images 69 103 (100) 63604 (92.0) 5499 (8.0) 1224 (1.8)

AECS-RetCAM

Birth weight, mean (SD), g 1766.1 (458.5) 1791.5 (452.0) 1293.6 (292.0) 1291.0 (258.4)

Gestational age, mean (SD), wk 33.8 (2.9) 34.0 (2.7) 30.1 (2.6) 30.2 (2.3)

Infants 1802 (100) 1710 (94.9) 92 (5.1) 33 (1.8)

Eyes 3747 (100) 3553 (94.8) 194 (5.2) 68 (1.8)

Examinations 2963 (100) 2795 (94.3) 168 (5.7) 34 (1.1)

Images 37 369 (100) 34880 (93.3) 2489 (6.7) 536 (1.4)

AECS-3nethra

Birth weight, mean (SD), g 1657.5 (416.1) 1690.6 (412.4) 1316.9 (280.5) 1283.6 (296.5)

Gestational age, mean (SD), wk 32.9 (2.8) 33.2 (2.7) 30.1 (2.3) 29.7 (2.0)

Infants 1015 (100) 925 (91.1) 90 (8.9) 36 (3.5)

Eyes 2127 (100) 1935 (91.0) 192 (9.0) 74 (3.5)

Examinations 2182 (100) 2016 (92.4) 166 (7.6) 37 (1.7)

Images 31 734 (100) 28724 (90.5) 3010 (9.5) 688 (2.2)

Abbreviations:
mtmROP, more-than-mild
retinopathy of prematurity;
ROP, retinopathy of prematurity.
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−0.017 to 0.011; P = .65) for type 1 ROP. The performance on
the Forus camera was slightly lower for mtmROP (mean dif-
ference, 0.049; 95% CI, 0.013-0.085; P = .007) but not for type
1 ROP (mean difference, 0.010; 95% CI, −0.005 to 0.028;
P = .26). Confusion matrices for mtmROP and type 1 ROP show
the number of true positives, false positives, true negatives,
and false negatives (Table 3). In SUNDROP, 196 of 6205 exami-
nations (3.2%; 196 total, including 19 with mtmROP and 0 with
type 1 ROP) were automatically referred due to 1 or both eyes
having no images of acceptable quality; in AECS, 152 of 5145
examinations (3.0%; 152 total, including 14 with mtmROP and
8 with type 1 ROP) were automatically referred. If imple-
mented fully autonomously, the algorithm could reduce the
number of telemedicine examinations requiring physician
time by approximately 80% (4915 of 6205 [79.2%], 2449 of
2963 [82.7%], and 1839 of 2182 [84.3%] for the SUNDROP,
AECS-RetCam, and AECS-3nethra datasets, respectively).

Patient-Level Analysis
No infants developed type 1 ROP prior to screening positive,
but 1 screened negative at the examination where type 1 ROP
was diagnosed (Table 3). However, the patient had already
screened positive in prior weeks and thus would have been

caught with continued follow-up. Specifically, this infant cor-
rectly screened positive for mtmROP at postmenstrual age of
35 weeks (VSS of 6.0) and 36 weeks (VSS4.7) when the dis-
ease was more vascularly active but did not screen positive at
37 weeks (VSS of 2.4) when the clinician decided to treat
(Figure 2). Notably, the examination at 37 weeks’ postmen-
strual age had better visualization of the peripheral pathol-
ogy, albeit reduced dilation and tortuosity. This case under-
scores 4 key aspects: the role of FOV in ROP diagnosis, the
subjectivity in diagnosing plus disease, the vascular phases of
ROP, and the need for clinical safeguards for implementing
autonomous ROP screening.

Discussion
In this external validation study of autonomous ROP screening
using AI in 2 large patient groups in the US and India, no infants
were diagnosed with type 1 ROP before screening positive by an
autonomousAIsystem,andapproximately80%ofexaminations
screened negative in both populations. These results suggest that
AI could significantly aid ROP prevention efforts globally, includ-
ing in low-income and middle-income countries. However, the

Figure 1. Violin Plots of Vascular Severity Score vs Retinopathy of Prematurity (ROP) Screening Category
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Violin plots demonstrate the
association between the vascular
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camera datasets. AECS data were
analyzed together as well as
by camera.

Table 2. Examination-Level Diagnostic Performance for More-Than-Mild and Treatment-Requiring
Retinopathy of Prematurity

Measure

% (95% CI)

SUNDROP AECS (all) AECS-RetCam AECS-3nethra
mtmROP

AUROC 0.896 0.920 0.947 0.898

Sensitivity 83.5 (76.6-87.7) 80.8 (76.2-84.9) 88.7 (82.9-93.1) 72.9 (65.5-79.5)

Specificity 82.2 (81.2-83.1) 87.8 (86.8-88.7) 86.9 (85.6-88.2) 89.0 (87.5-90.3)

Positive predictive value 18.1 (16.0-20.3) 31.5 (28.4-34.7) 29.0 (25.1-33.1) 35.3 (30.2-40.6)

Negative predictive value 99.1 (98.8-99.3) 98.5 (98.1-98.8) 99.2 (98.8-99.5) 97.6 (96.7-98.2)

Type 1 ROP

AUROC 0.985 0.982 0.988 0.978

Sensitivity 100 (82.4-100) 98.6 (92.4-100) 100 (89.7-100) 97.3 (85.8-99.9)

Specificity 79.5 (78.4-80.5) 84.5 (83.5-85.5) 83.6 (82.2-84.9) 85.7 (84.1-87.1)

Positive predictive value 1.5 (0.9-2.3) 8.2 (6.4-10.2) 6.6 (4.6-9.1) 10.5 (7.5-14.2)

Negative predictive value 100 (99.9-100) 99.9 (99.9-100) 100 (99.8-100) 99.9 (99.7-100)

Abbreviations: AECS, Aravind Eye
Care Systems; AUROC, area under the
receiver operating characteristic
curve; mtmROP, more-than-mild
retinopathy of prematurity;
ROP, retinopathy of prematurity;
SUNDROP, Stanford University
Network for Diagnosis of ROP.
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implementation challenges of this technology remain. Although
telemedicine has proven effective in ROP screening, with suc-
cessful large-scale programs in the US and India, the feasibility
of deploying costly cameras varies (ie, it is more viable in densely
populated areas where a camera serves multiple NICUs). Accord-
ingly, UNICEF has highlighted the need for low-cost cameras
as a global health priority.31,32

Currently, the most affordable option that provides suffi-
cient FOV for ROP screening is the Forus 3nethra camera, de-
veloped and manufactured in India. It is encouraging that the
overall performance for detecting type 1 ROP was similar
(Table 2), which suggests that integrating and deploying this
technology with the Forus is possible even though the algo-
rithm was developed using RetCam data. Further prospec-

tive validation may better define whether performance on the
3nethra camera could be optimized with a refined algorithm
or different operating point (post hoc sensitivity analysis avail-
able in eTable 3 in Supplement 1). Defining and solving imple-
mentation barriers to deploying ROP telemedicine programs
ought to be a key next step to maximally use the potential ben-
efits of AI.32

There are several potential advantages to incorporating
autonomous AI-based screening into ROP telemedicine pro-
grams, besides the potential 80% workload reduction for tele-
medicine graders. Autonomous screening can provide real-
time feedback to NICU teams and families, facilitating
educational efforts aimed at maximizing follow-up rates up on
discharge. Previous work has also demonstrated other clini-

Table 3. Examination-Level Confusion Matrix for Clinical Diagnosis vs Autonomous Diagnosis

Autonomous
diagnosis

Clinical diagnosis

SUNDROP AECS-RetCam AECS-3nethra

Less than
mtmROP mtmROP

Less than
type 1
ROP Type 1

Less than
mtmROP mtmROP

Less than
type 1
ROP Type 1

Less than
mtmROP mtmROP

Less than
type 1
ROP Type 1

Less than
mtmROP

4869 46 4915 0 2430 19 2449 0 1794 45 1838 1a

mtmROP 1057 233 1271 19 365 149 480 34 222 121 307 36

Abbreviations: AECS, Aravind Eye Care Systems; mtmROP, more-than-mild retinopathy of prematurity; ROP, retinopathy of prematurity;
SUNDROP, Stanford University Network for Diagnosis of ROP.
a See eFigure in Supplement 1 for details.

Figure 2. Examination With Missed Treatment-Requiring Type 1 Retinopathy of Prematurity (ROP) in the Aravind Dataset With the Forus 3nethra Camera

35 wkA 36 wkB 37 wkC

A posterior image and the best-available image of the temporal pathology in the right eye are shown for each week. This infant had 2 true-positive examinations for
more-than-mild ROP at postmenstrual age 35 and 36 weeks (vascular severity scores of 6.0 and 4.7, respectively). At postmenstrual age 37 weeks, the vascular
severity score had improved to 2.4, and the eye was below the referral threshold. However, the pathology was better visualized, and the physician decided to treat
due to the appearance of the peripheral pathology, which was becoming fibrotic. With common-sense implementation, infants who screen positive for (and are
confirmed to have) more-than-mild ROP would continue to be monitored until the disease progresses or regresses, and this infant would not have been missed.
Thus, infant-level sensitivity for type 1 ROP was 100%. This case also nicely illustrates the pathophysiology of ROP that progresses through a vascularly active phase
and then becomes cicatricial with disease regression, which has important implications for screening based solely using vascular severity score.

Research Original Investigation Multinational External Validation of Autonomous Retinopathy of Prematurity Screening

E6 JAMA Ophthalmology Published online March 7, 2024 (Reprinted) jamaophthalmology.com

© 2024 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by Alok Gupta on 03/08/2024

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaophthalmol.2024.0045?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2024.0045
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaophthalmol.2024.0045?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2024.0045
http://www.jamaophthalmology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2024.0045


cal benefits of using AI-based assessment of ROP severity, in-
cluding longitudinal disease monitoring before and after
treatment.25,33-35 That is, for eyes that screen positive, the VSS
can be used as an objective biomarker to aid clinicians in iden-
tifying infants’ progression to type 1 ROP. The VSS concept has
also been integrated into clinical risk models, which can fur-
ther improve the specificity of disease screening and reduce
the number of required examinations in low-risk neonates; this
has been validated in the US, India, Nepal, and Mongolia.19,20

Finally, data suggest that AI-based assessment of ROP sever-
ity at the NICU (rather than individual) level may identify NICUs
with higher-than-expected ROP severity and be useful for as-
sessment of interventions for primary prevention.21,36-38

Limitations
This study has limitations. The inherent obstacle in implement-
ing autonomous ROP screening is the risk of missing type 1 ROP
and the subsequent risk of visual loss. This is not a trivial risk,
and therefore, discussion around when, if, and how autono-
mous ROP screening could be implemented—and with what
safeguards—is essential. This must be balanced against the sta-
tus quo: roughly 30 000 to 50 000 infants lose vision from ROP
worldwide, primarily due to absent, late, or ineffective screen-
ing. In this analysis of 2 large ROP programs, no infants with type
1 ROP were missed; however, no retinal detachments (stage 4
or 5 ROP) were observed. As a result, we are unable to evaluate
what would happen in the rare case a retinal detachment was
present on the first examination. Regardless, clinical safe-
guards, such as the requirement that all first examinations are
reviewed manually, could ensure that any pathology other than
what the model was trained for (eg, stage 4 or 5 ROP, retino-

blastoma) are captured. Another important consideration is how
and when to discontinue screening, which will need to be evalu-
ated at each health care system where this is deployed. Addi-
tionally, we recognize that adding pre–plus disease to the defi-
nition of mtmROP may be controversial, but preliminary results
suggested there was no difference in AUROC for either out-
come (mtmROP or type 1 ROP) in either dataset. The advan-
tage of a VSS-based cutoff is that the operating point can be ad-
justed based on any outcome definition, be it the traditional
definition of referral warranted, stage 3 ROP, type 2 ROP, or, as
in this study, mtmROP. In all cases, it is important to consider
appropriate follow-up intervals to minimize the risk that pa-
tients with mtmROP (by any definition) progress to the point
of treatment before their next screening examination.

Conclusions
Although the current analysis has the advantage of being based
on real-world telemedicine datasets, which have heteroge-
neity in image acquisition practices, clinical diagnosis, and pa-
tient demographic characteristics, it should be noted that this
system is not available for clinical practice at this time. The ma-
jor limitation to this work is that scaling these results into tele-
medicine programs requires investment in digital cameras
that may be cost-prohibitive, and the algorithm would need
to be validated and/or adapted to work with images from fu-
ture cameras. As part of a comprehensive ROP program with
optimization of primary prevention, and available ROP treat-
ment, autonomous ROP screening may play a role in reduc-
ing the incidence of ROP-related blindness.
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